التأثير الكهروضوئي

حنان مشقوق
حنان مشقوق

تم التدقيق بواسطة: فريق أراجيك

لاحظ العديد من العلماء ظاهرة التأثير الكهروضوئي على مدى سنوات، إلا أنهم لم يستطيعوا تحديد أو فهم طبيعة السلوك الضوئي هذا. وهكذا حتى القرن التاسع عشر عندما بدأ الفيزيائيان جيمس كلارك ماكسويل وهندريك لورينتز دراسة هذه الظاهرة وتداخل الموجات الضوئية وكل من ظاهرتي الانكسار والتشتت. واستمرت الدراسات حتى توجه العالم ألبرت آينشتاين إلى دراسة هذه الظاهرة، واستطاع الوصول إلى الكشف عن الملامح الرئيسية لها وشرحها والآثار المترتبة عليها.


ملامح اكتشاف التأثير الكهروضوئي

لوحظ التأثير الكهروضوئي لأول مرة عام 1887 بواسطة هاينريش هرتز أثناء إحدى التجارب التي قام بها، نتيجة تسبب الشرر المتولد بين مجالين معدنيين صغيرين في جهاز إرسال في إحداث شررٍ بين مجالين معدنيين مختلفين في جهاز الاستقبال.

بدأ تفسير هذه الظاهرة على أنها عملية انتقال الطاقة الضوئية إلى الإلكترونات، مما يؤدي إلى تحريرها، بالتالي فإن أي تغييرٍ في الشدة الضوئية سيؤثر على الطاقة الحركية للإلكترونات المنبعثة بشكلٍ طرديٍّ. ومع الوقت والعديد من التجارب، استطاع العلماء التوصل إلى أن تحرير الإلكترونات يحدث فقط عند بلوغ الشدة الضوئية حد عتبة محدد، وإلا لن يتم تحرير أي إلكتروناتٍ.

ثم جاء بعدها آينشتاين ليقول أن الضوء يتشكل من مجموعةٍ من الحزم التي تسمى فوتونات، والتي تشابه الإلكترونات في الذرات، وليس موجات كما ساد الاعتقاد سابقًا. بعد حوالي 16 عامًا، نشر آينشتاين أبحاثه تلك المتعلقة بظاهرة التأثير الكهروضوئي وتم منحه براءة اختراعٍ لنظريته هذه. وبدأ بعدها العلماء بدراسة هذه التأثيرات بمجموعةٍ من الدراسات المختلفة المتتالية، وبدأت التطبيقات المعتمدة على هذه الظاهرة بالانتشار يومًا بعد يوم.


تعريف التأثير الكهروضوئي

هو الظاهرة التي يتم فيها تحرير جزيئات مشحونة كهربائيًّا من أو داخل مادة عندما تمتص الإشعاع الكهرومغناطيسي، وغالبًا ما يعرف هذه التأثير بعملية انبعاث الإلكترونات من المادة عند امتصاص الإشعاع الكهرومغناطيسي مثل الأشعة فوق البنفسجية أو الأشعّة السينية، ويطلق على الإلكترونات المنبعثة اسم الإلكترونات الضوئية.

عند تعريض سطح معدنيّ لإشعاعٍ كهرومغناطيسي نشط بما يكفي يتم امتصاص الضوء، وانبعاث الإلكترونات، ويختلف تردد العتبة بالنسبة لمختلف المواد؛ فيتمثل بالضوء المرئي بالنسبة للمعادن القلوية والضوء القريب من الأشعة فوق البنفسجية للمعادن الأخرى وهكذا.

لقد وجد آينشتاين أن زيادة كثافة الإشعاع يؤدي إلى تحرير عددٍ أكبر من الإلكترونات التي يحمل كل منها نفس متوسط الطاقة التي يحملها الفوتون، كما أن زيادة التردد (بدلًا من زيادة الإشعاع الساقط) من شأنه أن يزيد متوسط طاقة الإلكترونات المطلقة أيضًا، ويعتبر التأثير الكهروضوئي الدليل الأكثر إقناعًا على وجود الفوتونات في الطبيعة.


معادلات آينشتاين في التأثيرات الكهروضوئية

أوجد آينشتاين مجموعةً من المعادلات الخاصة بظاهرة التأثير الكهروضوئي والتي بنّدها في مجموعة أوراقه البحثية. بدايةً وجد آينشتاين أن طاقة الفوتون تساوي الطاقة اللازمة لتحرير الإلكترون مضافًا إليها الطاقة الحركية للإلكترون المنبعث.

h.v= W +E

  • h: يمثل ثابت يدعى ثابت بلانك.
  • V: هو تواتر الفوتون.
  • W: العمل المنجز وهو يمثل الحد الأدنى من الطاقة المطلوبة لتحرير الإلكترون من سطح المعدن.
  • E: هي الطاقة الحركية القصوى للإلكترون.

وتعطى الطاقة الحركية للإلكترون بالعلاقة:

E= ½ mv2

  • m: تمثل كتلة الإلكترون المحرر.
  • V: هي سرعة هذا الإلكترون.

بتطبيق نظرية آينشتاين في النسبية، والعلاقة بين الطاقة القوة الدافعة للجسميات، نصل إلى العلاقة التالية في التأثير الكهروضوئي وفق:

E = [(pc)2 + (mc2)2](1/2)

حيث إنّ c هي سرعة الضوء في الفراغ، و p تمثل القوة الدافعة للجسميات.


بعض تطبيقات التأثير الكهروضوئي

  1. تستخدم الخلايا الكهروضوئية في الأصل للكشف عن الضوء عن طريق المصاعد والمهابط كما في تطبيقات الألياف البصرية.
  2. الخلايا الشمسية: تصنع عادةً من السيليكون الخاص والتي تعمل كالبطاريات حال تعرضها لضوء الشمس فتختزن الطاقة التي يمكن استخدامها في المجالات المختلفة كالإنارة والتدفئة.
  3. تكنولوجيا التصوير؛ كما في أنابيب الكاميرات التلفزيونية أو مكثفات الصور، حيث يمكن تحديد الانبعاثات الإلكترونية بعدد الفوتونات التي تصل إلى نقطةٍ محددةٍ. ويتم تحويل الفوتونات التي تقع على جانبٍ من المهبط إلى صورةٍ على الجانب الآخر. ثم تستخدم المجالات الكهربائية والمغناطيسية لتركيز الإلكترونات على شاشةٍ فوسفوريةٍ فينتج كل إلكترون يصيب الشاشة الفوسفورية وميضًا من الضوء مما يسبب إطلاق العديد من الإلكترونات.
  4. بالإمكان توظيف التأثير الكهروضوئي في تحليل المواد الكيميائية استنادًا إلى الإلكترونات المنبعثة.
  5. بعض العمليات النووية.
هل أعجبك المقال؟